Abstract
Genetic progress and increasing nutrient density for greater body mass and meat yield in poultry has inadvertently led to an imbalance between pectorales mass and sternal development which may or may not be detrimental to productivity and welfare. Slowing weight gain while promoting bone mineralization could positively influence sternal health. Thus, the present study aimed to evaluate the effect of graded calcium (Ca) supplementation in low nutrient density (LND) diets on sternal mass and bone turnover in meat ducks. Male meat ducks (720, 15-day-old) were randomly assigned and fed a standard nutrient density positive control (PC) diet, and 4 LND diets with 0.5, 0.7, 0.9, and 1.1% Ca, respectively. Metabolic energy (ME) was reduced in the LND by 9.5 and 16.3% at 15-35 D and 36-56 D compared to PC diet, respectively, while maintaining proportionate essential nutrient proportions to energy similar as in the PC diet. Although the 0.9% Ca LND diet decreased body weight and sternal dimension, it increased the relative sternum weight, the trabecular bone volume/tissue volume (BV/TV) and Ca content of the sternum compared with PC diet. Feeding 0.7% or more Ca with the LND diet significantly increased the mineral content, bone density, BV/TV, and trabecular number of the sternum for 49-days-old ducks. Furthermore, the LND diet with 0.7% or more Ca-increased osteocyte-specific gene mRNA and osteoprotegerin (OPG) expression, and it blocked the expression of cathepsin K and decreased osteoclasts number per bone surface. Tartrate-resistant acid phosphatase (TRAP) staining also revealed that the addition 0.7% or more Ca to the LND diet significantly decreased the number of osteoclasts compared with the 0.5% Ca LND diet. Meanwhile TRAP activity in serum was significantly decreased in 0.7% or more Ca-treated groups. We concluded that LND diet with 0.7% or more Ca may maintain optimal sternal mass through suppressing bone resorption for meat duck.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.