Abstract

Preconditioning deceased organ donors with calcineurin inhibitors (CNIs) may reduce ischemia-reperfusion injury to improve transplant outcomes. We searched MEDLINE, EMBASE, Cochrane Library, and conference proceedings for animal models of organ donation and transplantation, comparing donor treatment with CNIs with either placebo or no intervention, and evaluating outcomes for organ transplantation. Reviewers independently screened and selected studies, abstracted data, and assessed the risk of bias and clinical relevance of included studies. Where possible, we pooled results using meta-analysis; otherwise, we summarized findings descriptively. Eighteen studies used various animals and a range of CNI agents and doses and evaluated their effects on a variety of transplant outcomes. The risk of bias and clinical applicability were poorly reported. Pooled analyses suggested benefit of CNI treatment on early graft function in renal transplants (3 studies; serum creatinine: ratio of means [RoM] 0.54; 95% confidence interval [CI], 0.34-0.86) but not for liver transplants (2 studies; serum alanine transaminase: RoM 0.61; 95% CI, 0.30-1.26; and serum aspartate aminotransferase: RoM 0.58; 95% CI, 0.26-1.31). We found no reduction in graft loss at 7 d (2 studies; risk ratio 0.54; 95% CI, 0.08-3.42). CNI treatment was associated with reduced transplant recipient levels of interleukin-6 (4 studies; RoM 0.36; 95% CI, 0.19-0.70), tumor necrosis factor-alpha (5 studies; RoM 0.36; 95% CI, 0.12-1.03), and cellular apoptosis (4 studies; RoM 0.30; 95% CI, 0.19-0.47). Although this compendium of animal experiments suggests that donor preconditioning with CNIs may improve early kidney graft function, the limited ability to reproduce a true clinical environment in animal experiments and to assess for risk of bias in these experiments is a serious weakness that precludes current clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.