Abstract

Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the “regional basic diet” of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD 8). At 70–75 days of life, a subset of the pups was treated intraperitoneally with 30 mg/kg caffeine for 4 days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD 8-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD 22 group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call