Abstract
The rising popularity of alcohol mixed with energy drinks (AmEDs) has become a significant public health concern, with AmED users reporting higher levels of alcohol intake than non-AmED users. One mechanism proposed to explain this heightened level of alcohol intake in AmED users is that the high levels of caffeine found in energy drinks may increase the positive reinforcing properties of alcohol, an effect that may be dependent on interactions between adenosine receptor signaling pathways and the dopamine D2 receptor. Therefore, the purpose of the current study was to confirm whether caffeine does increase the positive reinforcing effects of alcohol using both fixed ratio (FR) and progressive ratio (PR) designs, and to investigate a potential role of the dopamine D2 receptor to caffeine-induced increases in alcohol self-administration. Male Long-Evans rats were trained to self-administer a sweetened alcohol solution (10% v/v alcohol+2% w/v sucrose) on an FR2 schedule of reinforcement, and the effects of caffeine (0, 5, 10, and 20mg/kg, i. p. [intraperitoneally]) on the maintenance of alcohol self-administration and alcohol break point were examined. Parallel experiments in rats trained to self-administer sucrose (0.8% w/v) were conducted to determine whether caffeine's reinforcement-enhancing effects extended to a non-drug reinforcer. Caffeine pretreatment (5-10mg/kg) significantly increased sweetened alcohol self-administration and motivation for a sweetened alcohol reinforcer. However, similar increases in self-administration of a non-drug reinforcer were not observed. Contrary to our hypothesis, the D2 receptor antagonist eticlopride did not block a caffeine-induced increase in sweetened alcohol self-administration, nor did it alter caffeine-induced increases in motivation for a sweetened alcohol reinforcer. Taken together, these results support the hypothesis that caffeine increases the positive reinforcing effects of alcohol, which may explain caffeine-induced increases in alcohol intake. However, the reinforcement-enhancing effects of caffeine appear to be independent of D2 receptor function.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have