Abstract

In this work, we present the real case of an industrial product was placed prematurely on the market without having checked the different stages of its life cycle. This type of products must be validated by numerical methods and by mechanical tests to verify their rheological behavior. In particular, the product consists of two small pieces in contact, one made of HDPE and the other one corresponding to a stainless steel. The polymeric piece supports the metal pressure under a constant static load over time. As a result of normal operation, the polymer experienced a “crazing” breakdown, which caused the failure to occur. In the study, design methods and computer assisted analysis software (CAED) have been used. These methods were complemented by scanning electron microscopy that confirmed the initial failure hypothesis. Using the finite element method (FEM), a series of load scenarios were carried out, where the different load hypothesis the product must go through prior to its placing on the market were simulated. It is shown that the failure was initiated by stress concentration on one of the edges of the polymeric piece. The proposed solution of the problem based on the analysis focuses on a simple redesign of the piece, which should have been round, or to the reduction of the thickness of the metal piece. As a result of the alteration of its natural life cycle, the company assumed both monetary costs and the definitive loss of customer confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.