Abstract

Heavy metal contamination of waters and soils is particularly dangerous to the living organisms. Different studies have demonstrated that hydroxyapatite has a high removal capacity for divalent heavy metal ions in contaminated waters and soils. The removal of Cd from aqueous solutions by hydroxyapatite was investigated in batch conditions at 25 ± 2 ° C . Cadmium was applied both as single- or multi-metal ( Cd + Pb + Zn + Cu ) systems with initial concentrations from 0 to 8 mmol L −1. The adsorption capacity of hydroxyapatite in single-metal system ranged from 0.058 to 1.681 mmol of Cd/g of hydroxyapatite. In the multi-metal system competitive metal sorption reduced the removal capacity by 63–83% compared to the single-metal system. The sorption of Cd by hydroxyapatite follows the Langmuir model. Cadmium immobilization occurs through a two-step mechanism: rapid surface complexation followed by partial dissolution of hydroxyapatite and ion exchange with Ca resulting in the formation of a cadmium-containing hydroxyapatite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call