Abstract

BackgroundHeavy metals can cause great harm to Siberian tigers in the natural environment. Cadmium (Cd2+) is an environmental contaminant that affects multiple cellular processes, including cell proliferation, differentiation, and survival. It has been shown to induce apoptosis in a variety of cell types and tissues.ResultsWe investigated the apoptotic effects of Cd2+ on Siberian tiger fibroblasts in vitro. Our research revealed the typical signs of apoptosis after Cd2+ exposure. Apoptosis was dose- (0–4.8 μM) and duration-dependent (12–48 h), and proliferation was strongly inhibited. Cd2+ increased the activity of caspase-3, -8, and -9 and disrupted calcium homeostasis by causing oxidative stress and mitochondrial dysfunction. It also increased K+ efflux and altered the mRNA levels of Bax, Bcl-2, caspase-3, caspase-8, Fas, and p53.ConclusionsOur results suggest that Cd2+ triggers the apoptosis of Siberian tiger fibroblasts by disturbing intracellular homeostasis. These results will aid in our understanding of the effects of Cd2+ on Siberian tigers and in developing interventions to treat and prevent cadmium poisoning.

Highlights

  • Heavy metals can cause great harm to Siberian tigers in the natural environment

  • We evaluated the effects of Cd2+ on cell proliferation, mitochondrial function, calcium (Ca2+) homeostasis, caspase activation, and gene expression

  • The size of the tail increased as a function of Cd2+ dose. These results indicate that Cd2+ undermines the integrity of the DNA of Siberian tiger fibroblasts

Read more

Summary

Introduction

Heavy metals can cause great harm to Siberian tigers in the natural environment. Cd2+ exists in the earth’s crust and is a naturally occurring heavy metal. It is an environmental and industrial pollutant that has increased in abundance worldwide, causing significant ecological problems. It is toxic even at low doses partly owing to its long biological half-life after ingestion or inhalation. Long-term exposure to Cd2+ causes a variety of pathological conditions and poisons many cell types, including kidney, liver, brain, testis, lung, and thymus, both in vitro and in vivo [4,5,6].

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.