Abstract

The present study examined the effects of waterborne cadmium (Cd) exposure on ionic balance and ionocyte density in developing zebrafish (Danio rerio) (0-4 days post-fertilization). Fish exposed to 1 or 10μg Cd/L exhibited an increase in whole body Cd level. Exposure to 10μg Cd/L also significantly reduced whole body content of Ca2+, but not other major ions (e.g., Na+, K+ and Mg2+). Such reduction was accompanied by a decrease in the density of Ca2+-transporting ionocytes, the Na+/K+-ATPase-rich cells (NaRCs). However, the densities of other ionocyte subtypes (e.g., Na+-transporting ionocytes) remained unchanged after exposure to 10μg Cd/L. The potential interactive effects between water chemistry and Cd exposure on ionocyte density were examined further in Cd-exposed larvae acclimated to different water NaCl or Ca2+ levels. The results demonstrated that NaRC density increased in fish acclimated to low Ca2+ water, presumably increasing Ca2+ uptake for maintaining Ca2+ homeostasis. However, Cd exposure completely abolished the increased NaRC density in low water Ca2+ environments. The increased NaRCs over development was also reduced in Cd-exposed larvae. In conclusion, our study suggested that Cd exposure reduces the density of NaRCs and suppresses the compensatory regulation of NaRCs during acclimation to low water Ca2+ level. These inhibitory effects by Cd exposure ultimately disrupt Ca2+ balance in the early life stages of zebrafish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call