Abstract
Cadmium (Cd) and its forms has recently been a focus of attention due to its toxic effects on human health and the environment. We evaluated the atmospheric deposition of Cd during three consecutive winter seasons (2009–2011) at 10 mountain-top locations in the Czech Republic along the borders with Poland, Germany, Austria and Slovakia. Cadmium concentrations of soluble and insoluble forms in both horizontal (rime) and vertical (snow) deposition were determined using sector-field ICP-MS. Across the sites, 94% of the total winter Cd deposition occurred in the soluble (environmentally available) Cd form. Mean concentrations of soluble Cd in rime were six times higher than in snow (398 vs. 66 ng L−1). Vertical deposition contributed as much as 41% to the total winter Cd input. Between-site variability in Cd deposition was large, ranging between 13 and 108 μg m−2 winter−1. Overall, Cd concentrations in winter deposition did not reach the drinking water limits and did not pose a direct threat for human health. Long-term trends (1996–2017) in winter Cd deposition were evaluated at six GEOMON sites (a monitoring network of small forested catchments). Since 1996, Cd input in winter atmospheric deposition decreased by 73–93%. Simultaneously, we found declines in between-site variability in winter Cd inputs. The highest recent winter Cd inputs were found at sites located in the northeast of the country. A north-south pollution gradient, which has frequently been mentioned in the literature, was not observed, with both northwestern sites and southern sites being among those with the lowest Cd pollution. Backward trajectories of the HYSPLIT model for fresh snow samples identified Poland and Germany as major transboundary Cd pollution sources for the Czech Republic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have