Abstract
The epithelial-to-mesenchymal transition (EMT) is important for the formation of migratory neural crest cells during development and is co-opted in human diseases such as cancer metastasis. Chick premigratory cranial neural crest cells lose intercellular contacts, mediated in part by Cadherin-6B (Cad6B), migrate extensively, and later form a variety of adult derivatives. Importantly, modulation of Cad6B is crucial for proper neural crest cell EMT. Although Cad6B possesses a long half-life, it is rapidly lost from premigratory neural crest cell membranes, suggesting the existence of post-translational mechanisms during EMT. We have identified a motif in the Cad6B cytoplasmic tail that enhances Cad6B internalization and reduces the stability of Cad6B upon its mutation. Furthermore, we demonstrate for the first time that Cad6B is removed from premigratory neural crest cells through cell surface internalization events that include clathrin-mediated endocytosis and macropinocytosis. Both of these processes are dependent upon the function of dynamin, and inhibition of Cad6B internalization abrogates neural crest cell EMT and migration. Collectively, our findings reveal the significance of post-translational events in controlling cadherins during neural crest cell EMT and migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.