Abstract
It is well-accepted that knowledge of a small molecule’s target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.Scientific contributionsWith the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have