Abstract
In this paper, storage efficient caching based on time domain buffer sharing is considered. The caching policy allows a user to determine whether and how long it should cache a content item according to the prediction of its random request time, also referred to as the request delay information (RDI). In particular, the aim is to maximize the caching gain for communications while limiting its storage cost. To achieve this goal, a queueing theoretic model for caching with infinite buffers is first formulated, in which Little's law is adopted to obtain the tradeoff between the hit ratio and the average buffer consumption. When there exist multiple content classes with different RDIs, the storage efficiency is further optimized by carefully allocating the storage cost. For more practical finite-buffer caching, a $G/GI/L/0$ queue model is formulated, in which a diffusion approximation and Erlang-B formula are adopted to determine the buffer overflow probability and the corresponding hit ratio. The optimal hit ratio is shown to be limited by the demand probability and buffer size for large and small buffers respectively. In practice, a user may exploit probabilistic caching with random maximum caching time and arithmetic caching without any need for content arrival statistics to efficiently harvest content files in air.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have