Abstract

Recently, energy dissipation by microprocessors is getting larger, which leads to a serious problem in terms of allowable temperature and performance improvement for future microprocessors. Cache memory is effective in bridging a growing speed gap between a processor and relatively slow external main memory, and has increased in its size. Almost all of today's commercial processors, not only high- performance microprocessors but embedded ones, have on- chip cache memories. However, energy dissipation in the cache memory will approach or exceed 50% of the increasing total energy dissipation by processors. An important point to note is that, in the near future, static (leakage) energy will dominate the total energy consumption in deep sub-micron processes. This paper describes cache memory architecture, especially for on-chip multiprocessors, that achieves efficient reduction of leakage energy in cache memories by exploiting gated-Vdd control, software self- invalidation for LI cache, and dynamic data compression for L2 cache. The simulation results show that our techniques can reduce a substantial amount of leakage energy without large performance degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.