Abstract

Severe nerve injury such as axotomy induces neuron degeneration and death of surrounding glial cells. Using a crayfish stretch receptor that consists of a single mechanoreceptor neuron enveloped by satellite glia, we showed that axotomy not only mechanically injures glial cells at the transection location, but also induces necrosis or apoptosis of satellite glial cells remote from the transection site. We studied Ca2+role in spontaneous or axotomy-induced death of remote glial cells. Stretch receptors were isolated using the original technique that kept the neuron connected to the ventral cord ganglion (control preparations). Using Ca2+-sensitive fluorescence probe fluo-4, we showed Ca2+ accumulation in neuronal perikarion and glial envelope. Ca2+ gradually accumulated in glial cells after axotomy. In saline with triple Ca2+ concentration the axotomy-induced apoptosis of glial cells increased, but spontaneous or axotomy-induced necrosis was unexpectedly reduced. Saline with 1/3[Ca2+], oppositely, enhanced glial necrosis. Application of ionomycin, CdCl2, thapsigargin, and ryanodine showed the involvement of Ca2+ influx through ionic channels in the plasma membrane, inhibition of endoplasmic reticulum Ca2+-ATPase, and Ca2+ release from endoplasmic reticulum through ryanodine receptors in axotomy-induced glial necrosis. Apoptosis of glial cells surrounding axotomized neurons was promoted by ionomycin and thapsigargin. Possibly, other Ca2+ sources such as penetration through the plasma membrane contributed to axotomy-induced apoptosis and necrosis of remote glial cells. Thus, modulating different pathways that maintain calcium homeostasis, one can modulate axotomy-induced death of glial cells remote from the transection site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.