Abstract

The basolateral segment of the rat renal tubular plasma membrane possesses Ca2+-dependent ATPase activity which was independent of Mg2+. Two kinetic forms were found: one, was a high affinity (apparent Km for free Ca2+ of 172 nM) low capacity (Vmax of 144 nmol of Pi X min-1 mg-1 protein) type; the other, had low affinity (apparent Km of 25 microM) and high capacity (896 nmol of Pi X min-1 X mg-1 protein). Mg2+ inhibited both Ca2+-ATPases. The high affinity enzyme exhibited positive cooperativity with respect to ATP, with a n value of 1.6. Ca2+-ATPase activity was not affected by calmodulin and was not inhibited by vanadate. On the other hand, both high and low affinity Ca2+-ATPase activities were increased when 1,25-dihydroxycholecalciferol was given to vitamin D-deficient rats. Kinetically, the enhanced activities were due to an increase in the Vmax values; the apparent affinities for free Ca2+ were not changed. The physiological function of the vitamin D-sensitive, Mg+-independent, Ca2+-ATPase activities remains to be established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.