Abstract

Previously (Van Driessche et al. 1987) we showed that small inward (mucosa towards serosa) oriented short-circuit currents (Isc) were recorded through the toad urinary bladder when the mucosal side was exposed to Ca2+ free solutions containing K+, Na+ (+ amiloride), Cs+ or Rb+ as main cation. This current component is inhibitable by micromolar concentrations of mucosal La3+ and divalent cations (Ca2+, Cd2+) and is considerably elevated by oxytocin (0.1 U/ml). The present study demonstrates that the addition of 50 nmol/l Ag+ to the mucosal medium during oxytocin treatment caused an additional large increase of the La3+-sensitive Isc component. The power density spectrum of the fluctuation in current contained a Lorentzian component which was enhanced by oxytocin treatment. The Lorentzian component disappeared as a consequence of the administration of mucosal Ag+. In experiments with Ca2+, Ba2+ or Mg2+ as principal mucosal cation, the La3+-sensitive Isc component was negligible under control conditions and during oxytocin treatment. Mucosal Ag+ (40 nmol/l) elicited a large inward oriented current which was blockable by the calcium channel blockers, La3+ and Cd2+. Also the organic calcium entry blockers, nicardipine and verapamil (10 mumol/l) depressed the inward current considerably. Noise analysis of the currents carried by divalent cations showed a La3+-sensitive noise component. Oxytocin-Ag+ activated currents could not be recorded in the absence of the divalent cations or small inorganic cations, e.g. with solutions which contained N-methyl D-glucamine (NMDG) as main mucosal cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.