Abstract

Pomacea canaliculata was by far one of the most harmful invasive organisms in the world, causing serious harm to aquatic crops and ecosystem. Calcium carbonate is a common component of aquatic environment, which is important for the growth of Pomacea canaliculata. Therefore, the objective of this study was to investigate the response characteristics of P. canaliculata suffered shell breakage to the addition of calcium carbonate in water environment. In this experiment, we explored the effects of calcium carbonate addition on the P. canaliculata shell repair rate, food intake, egg production, shell strength, and calcium content through breaking the snails shell and the addition of calcium carbonate treatment. The results showed that snail broken-shell repaired mostly within 21 days. The snails experienced a significant increase in shell repair rates during earlier days of the treatment, especially for female snails. Food intake of snails exhibited different patterns when their shells were broken and calcium carbonate was added. Shell breakage treatment combined with calcium carbonate addition significantly increased the diameter of snail eggs compared with the control and the calcium carbonate addition treatment without shell-broken snail group. There was no significant difference in shell strength or calcium content of male snails between the treatments. The study suggests that P. canaliculata exhibits a sex-dependent response pattern when subjected to shell damage and calcium carbonate addition. The findings can provide some references to better understand the invasion mechanism and survival strategy of the P. canaliculata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.