Abstract

Restoration of cell volume in the continued presence of osmotic stimuli is essential, particularly in hepatocytes, which swell upon nutrient uptake. Responses to swelling involve the Ca2+-dependent activation of K+ channels, which promote fluid efflux to drive volume recovery; however, the channels involved in hepatocellular volume regulation have not been identified. We found that hypotonic exposure of HTC hepatoma cells evoked the opening of 50 pS K+-permeable channels, consistent with intermediate conductance (IK) channels. We isolated from rat liver and HTC cells a cDNA with sequence identity to the coding region of IK1. Swelling-activated currents were inhibited by transfection with a dominant interfering IK1 mutant. The IK channel blockers clotrimazole and TRAM-34 inhibited whole cell swelling-activated K+ currents and volume recovery. To determine whether IK1 underwent volume-sensitive localization, we expressed a green fluorescent protein fusion of IK1 in HTC cells. The localization of IK1 was suggestive of distribution in lipid rafts. Consistent with this, there was a time-dependent increase in colocalization between IK1 and the lipid raft ganglioside GM1 on the plasma membrane, which subsequently decreased with volume recovery. Pharmacological disruption of lipid rafts altered the plasma membrane distribution of IK1 and inhibited volume recovery after hypotonic exposure. Collectively, these findings support the hypothesis that IK1 regulates compensatory responses to hepatocellular swelling and suggest that regulation of cell volume involves coordination of signaling from lipid rafts with IK1 function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.