Abstract

Effects of Pb(2+) on vesicular catecholamine release in intact and ionomycin-permeabilized PC12 cells were investigated using carbon fibre microelectrode amperometry. Changes in intracellular Pb(2+) and Ca(2+) were measured from indo-1 fluorescence by confocal laser scanning microscopy. Depolarization of intact cells and superfusion of permeabilized cells with saline containing > or = 100 microm Ca(2+) rapidly evokes quantal catecholamine release. Superfusion with up to 10 microm Pb(2+) -containing saline evokes release of similar catecholamine quanta after a concentration-dependent delay. Thresholds to induce exocytosis within 30 min of exposure are between 1 and 10 microm Pb(2+) in intact cells and between 10 and 30 nm Pb(2+) in permeabilized cells. Additional inhibition of exocytosis occurs in permeabilized cells exposed to 10 microm Pb(2+). Using membrane-impermeable and -permeable chelators it is demonstrated that intracellular Ca(2+) is not required for Pb(2+) -induced exocytosis. In indo- 1-loaded cells Pb(2+) reduces the fluorescence intensity after a concentration-dependent delay, whereas the fluorescence ratio, indicating intracellular Ca(2+) concentration, remains unchanged. The delay to detect an increase in free intracellular Pb(2+) (> or = 30 nm) is much longer than the delay to Pb(2+) -induced exocytosis, indicating that cytoplasmic components buffer Pb(2+) with high affinity. It is concluded that Pb(2+) acts as a high-affinity substitute for Ca(2+) to trigger essential steps leading to vesicular catecholamine release, which occurs when only approximately 20% of the intracellular high-affinity binding capacity ( approximately 2 attomol/cell) is saturated with Pb(2+).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call