Abstract

Hexanucleotide repeat expansion in the gene C9ORF72 is a leading cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). C9ORF72 deficiency leads to severe inflammatory phenotypes in mice, but exactly how C9ORF72 regulates inflammation remains to be fully elucidated. Here, we report that loss of C9ORF72 leads to the hyperactivation of the JAK-STAT pathway and an increase in the protein levels of STING, a transmembrane adaptor protein involved in immune signaling in response to cytosolic DNA. Treatment with a JAK inhibitor rescues the enhanced inflammatory phenotypes caused by C9ORF72 deficiency in cell culture and mice. Furthermore, we showed that the ablation of C9ORF72 results in compromised lysosome integrity, which could contribute to the activation of the JAK/STAT-dependent inflammatory responses. In summary, our study identifies a mechanism by which C9ORF72 regulates inflammation, which might facilitate therapeutic development for ALS/FTLD with C9ORF72 mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.