Abstract

Missense mutation C694R in the RING domain of the LRSAM1 gene results in a dominantly inherited polyneuropathy, Charcot-Marie-Tooth disease type 2P (CMT2P). We have generated and characterized a Lrsam1C698R knock-in mouse model produced through CRISPR/Cas9 technology. Both heterozygous (Lrsam1+/C698R) and homozygous (Lrsam1C698/C698R) knock-in mice exhibited normal motor functions on behavioral tests as well as normal on nerve conduction studies. Axonal density and myelin thickness were not significantly different between mutants and wild-type mice by sciatic nerve morphometric analysis up to 17 months of age. In line with these normal findings, protein–protein interactions between mutant LRSAM1 and RNA-binding proteins (such as FUS and G3BP1) were still present in mouse cells, which differs from the disrupted interactions between these proteins in human CMT2P cells. However, after crush nerve injury, Lrsam1+/C698R mice had a mild, but statistically significant, reduced compound nerve action potential and conduction velocity during recovery. Therefore, C698R mutation results in a mild impaired nerve regeneration in mice. We speculate that repetitive nerve injuries may, at least partially, contribute to the slowly progressive axonal loss in CMT2P.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.