Abstract
ABSTRACTIn this work, we have examined the radiation-induced synthetic chemistry occurring in an astrochemically important C2H2–CO system at the molecular level using a matrix isolation approach. The 1:1 C2H2···CO intermolecular complex of linear structure was obtained in the solid low-temperature (5 K) noble gas matrices by deposition of the C2H2/CO/Ng (Ng = Ar, Kr, Xe) gaseous mixtures and characterized by Fourier-transform infrared spectroscopy. It was found that the X-ray radiolysis of the C2H2···CO complex resulted in formation of C3O (tricarbon monoxide), HCCCHO (propynal), c-H2C3O (cyclopropenone), H2CCCO (propadienone), and HC3O (oxoprorynyl radical). This means that the studied complex may be considered as the simplest building block (or minimal size of intermolecular reactor) for cold astrochemistry occurring in mixed interstellar ices. Remarkably, the discovered transformations of the complex actually represent synthetic routes leading to various C3 species, whereas the acetylenic C–H bond cleavage yielding ethynyl radical appears to be a minor process. Prolonged irradiation results in dehydrogenation, while the C3 skeleton is retained. The interpretation of the C2H2···CO radiolysis mechanism (possible reactions pathways) is provided based on the analysis of kinetic curves and matrix effect. Astrochemical implications of the results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.