Abstract

Cholesterol efflux from foam cells in atherosclerotic plaques is crucial for reverse cholesterol transport (RCT), an important antiatherogenic event. ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1, are key receptors in the cholesterol efflux pathway. C1q/tumor necrosis factor-related protein-9 (CTRP9) is a newly discovered adipokine and exhibits an atheroprotective activity. However, the role of CTRP9 in RCT still remains unknown. In this work, we investigated the effect of subcutaneous administration of CTRP9 protein on RCT and atherosclerotic lesion formation in ApoE-/- mice fed with a high-fat diet. CTRP9-dependent regulation of cholesterol efflux and ABC transporters in RAW 264.7 foam cells was determined. Our results showed that CTRP9 protein decreased atherosclerotic lesions, increased cholesterol efflux, and upregulated liver ABCA1 and ABCG1 expression in ApoE-/- mice. CTRP9 treatment dose-dependently increased mRNA and protein expression of ABCA1, ABCG1, and LXR-α in RAW 264.7 foam cells. Moreover, the expression and phosphorylation of AMPK was potentiated upon CTRP9 treatment. Notably, CTRP9-induced cholesterol efflux and upregulation of ABCA, ABCG1, and LXR-α were impaired when AMPK was knocked down. AMPK depletion restored cholesterol accumulation in CTRP9-treated RAW 264.7 cells. Taken together, subcutaneous injection is an effective novel delivery route for CTRP9 protein, and exogenous CTRP9 can facilitate cholesterol efflux and promote RCT in an animal model of atherosclerosis. The atheroprotective activity of CTRP9 is mediated through the activation of AMPK signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call