Abstract
The resolution of the capacitance-voltage profiling technique is known to be limited by the Debye length for classical structures. When very narrow layers exist in the sample quantum effects become important and the spatial extent of the electron (or hole) wave function can become a limiting factor. In this paper the interpretation of C-V profiles of structures containing delta-doped layers is discussed, concentrating on n-type layers in silicon. C-V profiles are calculated for a range of structures by solving Poisson's equation in one dimension, and results obtained from this classical model are compared with the electron wave function width as calculated from Schrodinger's equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.