Abstract

Disruption of cell contact sites during ischemia contributes to the loss of organ function in acute renal failure. Because prior heat stress protects cell contact sites in ATP-depleted renal epithelial cells in vitro, we hypothesized that heat shock protein 72 (HSP72), the major inducible cytoprotectant in mammalian cells, interacts with protein kinases that regulate cell-cell and cell-matrix interactions. ATP depletion increased the content of Tyr(416) Src, the activated form of this kinase. c-Src activation was associated with an increase in the tyrosine phosphorylation state of beta-catenin, paxillin, and vinculin, three c-Src substrate proteins that localize to and regulate cell contact sites. Prior heat stress inhibited c-Src activation and decreased the degree of tyrosine phosphorylation of all three Src substrates during ATP depletion and/or early recovery. HSP72 coimmunoprecipitated with c-Src only in cells subjected to heat stress. ATP depletion markedly increased the interaction between HSP72 and c-Src, supporting the hypothesis that HSP72 regulates Src kinase activity. These results suggest that alterations in the tyrosine phosphorylation state of proteins located at the cell-cell and cell-matrix interface mediate, at least in part, the functional state of these structures during ATP depletion and may be modulated by interactions between HSP72 and c-Src.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call