Abstract

Sulfur-containing scaffolds originating from small alkyl fragments play a crucial role in various pharmaceuticals, agrochemicals, and materials. Nonetheless, their synthesis using conventional methods presents significant challenges. In this study, we introduce a practical and efficient approach that harnesses hydrogen atom transfer photocatalysis to activate volatile alkanes, such as isobutane, butane, propane, ethane, and methane. Subsequently, these nucleophilic radicals react with SO2 to yield the corresponding sulfinates. These sulfinates then serve as versatile building blocks for the synthesis of diverse sulfur-containing organic compounds, including sulfones, sulfonamides, and sulfonate esters. Our use of flow technology offers a robust, safe and scalable platform for effectively activating these challenging gaseous alkanes, facilitating their transformation into valuable sulfinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.