Abstract
Cyber-Physical Networks(CPN) are comprehensive systems that integrate information and physical domains, and are widely used in various fields such as online social networking, smart grids, and the Internet of Vehicles(IoV). With the increasing popularity of digital photography and Internet technology, more and more users are sharing images on CPN. However, many images are shared without any privacy processing, exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI) algorithms. Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy. To address this issue, we propose a social relationship-driven privacy customization protection model for publishers and co-photographers. We construct a heterogeneous social information network centered on social relationships, introduce a user intimacy evaluation method with time decay, and evaluate privacy levels considering user interest similarity. To protect user privacy while maintaining image appreciation, we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN) to swap faces that need to be protected. Our proposed method minimizes the loss of image utility while satisfying privacy requirements, as shown by extensive theoretical and simulation analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.