Abstract

To investigate the diversified technologies in Internet of Vehicles (IoV) under intelligent edge computing, artificial intelligence, intelligent edge computing, and IoV are combined. Also, it proposes an IoV model for intelligent edge computing task offloading and migration under the SDVN (Software Defined Vehicular Networks) architecture, that is, the JDE-VCO (Joint Delay and Energy-Vehicle Computational task Offloading) optimization. And the simulation is performed. The results show that in the analysis of the impact of different offloading strategies on the IoV, it is found that the JDE-VCO algorithm is superior to other schemes in terms of transmission delay and total offloading energy consumption. In the analysis of the impact of the task unloading of the IoV, the JDE-VCO algorithm is less than RTO (Random Tasks Offloading) and UTO (Uniform Tasks Offloading) algorithm schemes in terms of the number of tasks per unit time, and the average task completion time for the same amount of uploaded data. In the analysis of the packet loss ratio and transmission delay, it can be found that the packet loss ratio and transmission delay of the JDE-VCO algorithm are less than the RTO and UTO algorithms. Moreover, the packet loss ratio of the JDE-VCO algorithm is about 0.1, and the transmission delay is stable at 0.2s, which has obvious advantages. Therefore, through research, the IoV model of task offloading and migration built by intelligent edge computing can significantly improve the load sharing rate, offloading efficiency, packet loss ratio, and transmission delay when the IoV is processing tasks and uploading data. It provides experimental basis for the improvement of the IoV system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.