Abstract

IntroductionBevacizumab improves survival outcomes in women diagnosed with epithelial ovarian cancer (EOC). Pre-clinical data showed that the c-MET/VEGFR-2 heterocomplex negates VEGF inhibition through activation of c-MET signalling, leading to a more invasive and metastatic phenotype. We evaluated the clinical significance of c-MET and VEGFR-2 co-localisation and its association with VEGF pathway-related single nucleotide polymorphisms (SNPs) in women participating in the phase 3 trial, ICON7 (ClinicalTrials.gov identifier: NCT00262847).Materials and methodsPatients had FIGO stage I-IIA grade 3/poorly differentiated or clear cell carcinoma or stage IIB-IV epithelial ovarian, primary peritoneal or fallopian tube cancer. Immunofluorescence staining for co-localised c-MET and VEGFR-2 on tissue microarrays and genotyping of germline DNA from peripheral blood leukocytes for VEGFA and VEGFR-2 SNPs was performed. The significance of these biomarkers was assessed against survival.ResultsTissue microarrays from 178 women underwent immunofluorescence staining. Multivariable analysis showed that greater c-MET/VEGFR-2 co-localisation predicted worse OS in patients treated with bevacizumab after adjusting for FIGO stage and debulking surgery outcome (hazard ratio [HR] 1.034, 95% confidence interval [95%CI] 1.010–1.059). Women in the c-MET/VEGFR-2HIGH group treated with bevacizumab demonstrated significantly reduced OS (39.3 versus > 60 months; HR 2.00, 95%CI 1.08–3.72). Germline DNA from 449 women underwent genotyping. In the bevacizumab group, those women with the VEGFR-2 rs2305945 G/G variant had a trend towards shorter PFS compared with G/T or T/T variants (18.3 versus 23.0 months; HR 0.74, 95%CI 0.53–1.03).ConclusionsIn bevacizumab-treated women diagnosed with EOC, high c-MET/VEGFR-2 co-localisation on tumour tissue and the VEGFR-2 rs2305945 G/G variant, which may be biologically related, were associated with worse survival outcomes.

Highlights

  • Bevacizumab improves survival outcomes in women diagnosed with epithelial ovarian cancer (EOC)

  • Multivariable analysis showed that greater c-MET/VEGFR-2 co-localisation predicted worse overall survival (OS) in patients treated with bevacizumab after adjusting for FIGO stage and debulking surgery outcome

  • In bevacizumab-treated women diagnosed with EOC, high c-MET/VEGFR-2 co-localisation on tumour tissue and the VEGFR-2 rs2305945 G/G variant, which may be biologically related, were associated with worse survival outcomes

Read more

Summary

Introduction

Bevacizumab improves survival outcomes in women diagnosed with epithelial ovarian cancer (EOC). We evaluated the clinical significance of c-MET and VEGFR-2 co-localisation and its association with VEGF pathway-related single nucleotide polymorphisms (SNPs) in women participating in the phase 3 trial, ICON7 (ClinicalTrials.gov identifier: NCT00262847). Multi-modality first-line therapy includes cytoreductive surgery plus platinum-based chemotherapy, followed by maintenance therapies in certain subgroups [2]. One such maintenance therapy is the anti-angiogenic agent, bevacizumab, a humanised monoclonal antibody directed against vascular endothelial growth factor (VEGF) [3]. Two randomised phase 3 trials, ICON7 and GOG-0218, demonstrated significant improvements in progression-free survival (PFS) using bevacizumab as part of the first-line therapy, with improvements in overall survival (OS) in patients at the highest risk of relapse [4,5,6,7]. While we have identified plasma Tie as the first response biomarker for VEGF inhibitors, we were unable to identify a biomarker that would predict the benefit from bevacizumab [8,9,10]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call