Abstract

C cells are primarily known for producing calcitonin, a hypocalcemic and hypophosphatemic hormone. Nevertheless, besides their role in calcium homeostasis, C cells may be involved in the intrathyroidal regulation of follicular cells, suggesting a possible interrelationship between the two endocrine populations. If this premise is true, massive changes induced by different agents in the activity of follicular cells may also affect calcitonin-producing cells. To investigate the behaviour of C cells in those circumstances, we have experimentally induced two opposite functional thyroid states. We hyperstimulated the follicular cells using a goitrogen (propylthiouracil), and we suppressed thyroid hormone synthesis by oral administration of thyroxine. In both scenarios, we measured T(4), TSH, calcitonin, and calcium serum levels. We also completely sectioned the thyroid gland, specifically immunostained the C cells, and rigorously quantified this endocrine population. In hypothyroid rats, not only follicular cells but also C cells displayed hyperplastic and hypertrophic changes as well as increased calcitonin levels. When exogenous thyroxine was administered to the rats, the opposite effect was noted as a decrease in the number and size of C cells, as well as decreased calcitonin levels. Additionally, we noted that the two cell types maintain the same numerical relation (10 +/- 2.5 follicular cells per C cell), independent of the functional activity of the thyroid gland. Considering that TSH serum levels are increased in hypothyroid rats and decreased in thyroxine-treated rats, we discuss the potential involvement of thyrotropin in the observed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.