Abstract

The present study presents the use of photochemiluminescence assay (PCL) and 2,2 diphenyl-1-picryl-hydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), the ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) methods for the measurement of lipid-soluble antioxidant capacity (ACL) of 14 different byproducts obtained from the vegetable oil industry (flour, meals, and groats). The research showed that the analyzed samples contain significant amounts of phenolic compounds between 1.54 and 74.85 mg gallic acid per gram of byproduct. Grape seed flour extract had the highest content of total phenolic compounds, 74.85 mg GAE/g, while the lowest level was obtained for the sunflower groats, 1.54 mg GAE/g. DPPH values varied between 7.58 and 7182.53 mg Trolox/g of byproduct, and the highest antioxidant capacity corresponded to the grape seed flour (7182.53 mg Trolox/g), followed by walnut flour (1257.49 mg Trolox/g) and rapeseed meals (647.29 mg Trolox/g). Values of ABTS assay of analyzed samples were between 0 and 3500.52 mg Trolox/g of byproduct. Grape seed flour had the highest value of ABTS (3500.52 mg Trolox/g), followed by walnut flower (1423.98) and sea buckthorn flour (419.46). The highest values for FRAP method were represented by grape seed flour (4716.75 mg Trolox/g), followed by sunflower meals (1350.86 mg Trolox/g) and rapeseed flour (1034.92 mg Trolox/g). For CUPRAC assay, grape seed flour (5936.76 mg Trolox/g) and walnut flour (1202.75 mg Trolox/g) showed the highest antioxidant activity. To assess which method of determining antioxidant activity is most appropriate for the byproducts analyzed, relative antioxidant capacity index (RACI) was calculated. Depending on the RACI value of the analyzed byproducts, the rank of antioxidant capacity ranged from −209.46 (walnut flour) to 184.20 (grape seed flour). The most sensitive methods in developing RACI were FRAP (r = 0.5795) and DPPH (r = 0.5766), followed by CUPRAC (r = 0.5578) and ABTS (r = 0.4449), respectively. Strong positive correlations between the antioxidant capacity of lipid-soluble compounds measured by PCL and other methods used for determining antioxidant activity were found (r > 0.9). Analyses have shown that the different types of byproducts obtained from the vegetable oil industry have a high antioxidant activity rich in phenolic compounds, and thus their use in bakery products can improve their nutritional quality.

Highlights

  • During the process of obtaining vegetable oils, considerable amounts of waste and byproducts are generated

  • The phenolic content, flavonoid content, and the lipid-soluble antioxidant capacity of 14 byproducts obtained in the vegetable oil industry were measured

  • Results confirm that the byproducts analyzed are a good source of many biological functional substances having considerable amounts of total phenolic content

Read more

Summary

Introduction

During the process of obtaining vegetable oils, considerable amounts of waste and byproducts are generated These byproducts from the vegetable oil industry are important due to their high value-added substances, and they represent an excellent source of bioactive components, such as antioxidants. The results obtained showed that sea buckthorn flour is a good source of ascorbic acid, polyphenols, and flavonoids. This byproduct added in different concentrations in wheat bread has extended the shelf life to 72 h and has improved antioxidant activity. Hemp is rich in protein, fat, carbohydrates, and fiber It contains significant amounts of macroelements, such as P, K, Mg, Na, and Ca. Hemp flour is a good source of bioactive compounds, especially polyphenols [4]. Studies have shown that the addition of hemp flour to bread improves the nutritional properties

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call