Abstract

Alzheimer's disease (AD) pathogenesis has been attributed to extracellular aggregates of amyloid β (Aβ) plaques and neurofibrillary tangles in the human brain. It has been reported that butyrylcholinesterase (BChE) also accumulates in the brain Aβ plaques in AD. We have previously found that the BChE substitution in 5′UTR caused an in-frame N-terminal extension of 41 amino acids of the BChE signal peptide. The resultant variant with a 69 amino acid signal peptide, designated N-BChE, could play a role in AD development. Here, we report that the signal sequence of the BChE, if produced in an extended 69 aa version, can self-aggregate and could form seeds that enhance amyloid fibril formation in vitro in a dose-dependent manner and create larger co-aggregates. Similar phenomena could have been observed in the human brain if such an extended form of the signal sequence had been, in some circumstances, translated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.