Abstract

Treatment of a distal radius fracture should consider principles including stable fixation and early motion. The aim of this study was to investigate the biomechanical interactions of plate-fixation angles in the internal double-plating method coupled with various load conditions using non-linear finite element analysis (FEA). A 3D finite element distal radius fracture model with three separation angles (50, 70, and 90 degrees ) between the buttressed L- and straight plates was generated based on computed tomography data. After model verification and validation, frictional (contact) elements were used to simulate the interface condition between the fixation plates and the bony surface. The stress/strain distributions and displacements at the radius end were observed under axial, bending, and torsion load conditions. The simulated results indicated that the bending and torsion increased the stress values more than the axial load. The radius and straight plate stress values decreased significantly with increasing fixation angles for all load conditions. However, the L-plate stress values increased slightly under the bending buckling effect. The displacements at the radius end and strains at the fracture healing interface decreased with increasing fixation angles for axial and torsion conditions but displayed a slight difference for the bending condition. The findings using FEA provide quantitative evidence to identify that much larger plate fixation angles could provide better mechanical strength to establish favorable stress-transmission and prevent distal fragment dislocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.