Abstract

Butterfly-shaped and dromion-like optical waves in a tapered graded-index waveguide (GRIN) are reported for the first time. The generalized nonlinear Schrödinger equation, which describes wave propagation in GRIN with variable group-velocity dispersion (GVD), nonlinearity, PT symmetric optical potentials, is investigated and analytical solutions for this dynamical system are obtained. The physical effects affecting these waves are explicated in detail. The stability of dromion-like structures is analyzed when the GVD parameter is perturbed. We have observed oscillation structure exhibiting strong interference due to this applied perturbation. For a particular value of the modulation of the GVD parameter, the oscillation structure is transformed into two dromion-like structures. It indicates that the dromion-like structure is unstable, and the coherence intensity is affected by the modified perturbation parameter. We further demonstrate the phenomenon of unbreakable PT symmetry of these novel nonlinear waves for three explicit examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.