Abstract

Butterfly-shaped and dromion-like optical waves in a tapered graded-index waveguide (GRIN) with an external source are reported for the first time, to our knowledge. More pertinently, we obtain these waves both analytically and numerically in a generalized nonlinear Schrödinger equation (GNLSE), which describes self-similar wave propagation in GRIN with variable group-velocity dispersion (GVD), nonlinearity, gain, and source. The proposed GNLSE appertains to the study of similariton propagation through asymmetric twin-core fiber amplifiers. Dromion-like structures, which have generally been investigated in the (2+1) or higher dimensional systems, are reported in the (1+1) dimensional GNLSE with an external source. Herein, we introduce the concept of soliton management when the variable group-velocity dispersion and Kerr nonlinearity functions are suggested. For example, when the GVD parameter is perturbed, we observe the emergence of vibration of dromion-like structures. Then the dromion-like structure is transformed into oscillation by the modulation instability of the modified coefficient of the Gaussian GVD function, exhibiting interference based on two dromion-like structures. Additionally, the phenomenon of unbreakable PT symmetry of these nonlinear waves has been demonstrated for three explicit examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call