Abstract

In the present article, we investigate the charged micro-particle dynamics in the surface radio-frequency trap (SRFT). We have developed a new configuration of the SRFT that consists of three curved electrodes on a glass substrate for massive micro-particles trapping. We provide the results of numerical simulations for the dynamical regimes of charged silica micro-particles in the SRFT. Here, we introduce a term of a "main route" to chaos, i.e., the sequence of dynamical regimes for the given particles with the increase of the strength of an electric field. Using the Lyapunov exponent formalism, typical Reynolds number map, Poincaré sections, bifurcation diagrams, and attractor basin boundaries, we have classified three typical main routes to chaos depending on the particle size. Interestingly, in the system described here, all main scenarios of a transition to chaos are implemented, including the Feigenbaum scenario, the Landau-Ruelle-Takens-Newhouse scenario as well as intermittency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.