Abstract

Synchronization in complex networks is an evergreen subject with many practical applications across the natural and social sciences. The stability of synchronization is thereby crucial for determining whether the dynamical behavior is stable or not. The master stability function is commonly used to that effect. In this paper, we study whether there is a relation between the stability of synchronization and the proximity to certain bifurcation types. We consider four different nonlinear dynamical systems, and we determine their master stability functions in dependence on key bifurcation parameters. We also calculate the corresponding bifurcation diagrams. By means of systematic comparisons, we show that, although there are some variations in the master stability functions in dependence on bifurcation proximity and type, there is in fact no general relation between synchronization stability and bifurcation type. This has important implication for the restrained generalizability of findings concerning synchronization in complex networks for one type of node dynamics to others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call