Abstract

Abstract We consider nonsymmetric hermitian complex Hadamard matrices belonging to the Bose-Mesner algebra of commutative nonsymmetric association schemes. First, we give a characterization of the eigenmatrix of a commutative nonsymmetric association scheme of class 3 whose Bose-Mesner algebra contains a nonsymmetric hermitian complex Hadamard matrix, and show that such a complex Hadamard matrix is necessarily a Butson-type complex Hadamard matrix whose entries are 4-th roots of unity.We also give nonsymmetric association schemes X of class 6 on Galois rings of characteristic 4, and classify hermitian complex Hadamard matrices belonging to the Bose-Mesner algebra of X. It is shown that such a matrix is again necessarily a Butson-type complex Hadamard matrix whose entries are 4-th roots of unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.