Abstract

AbstractA trade in a complex Hadamard matrix is a set of entries which can be changed to obtain a different complex Hadamard matrix. We show that in a real Hadamard matrix of order n all trades contain at least n entries. We call a trade rectangular if it consists of a submatrix that can be multiplied by some scalar c ≠ 1 to obtain another complex Hadamard matrix. We give a characterisation of rectangular trades in complex Hadamard matrices of order n and show that they all contain at least n entries. We conjecture that all trades in complex Hadamard matrices contain at least n entries.KeywordsHadamard matrixTradeRankMathematics Subject Classification (2010):05B2015B34

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.