Abstract

The butadiyne-linked six-metalloporphyrin nanoring (Mg6-P6) and it's complex with a hexapyridyl template, Mg6-P6·T6 have a great potential for employment in future nanoelectronic applications such as a nanosensor for small gas molecules.The goal of this study is to scrutinize and improvement of the CO, N2, and O2 gas sensing capacity of Mg6-P6 and Mg6-P6·T6 using DFT calculations at CAM-B3LYP/6-31G (d,p) level of theory.The geometrical structures, binding energies, band gaps, the density of states (DOS), adsorption energies, HOMO and LUMO energies, Fermi level energies (EFL), NBO, FMO and TD-DFT spectrum were calculated to predict gas adsorption properties of Mg6-P6 and Mg6-P6·T6 systems. Based on the calculated adsorption energies and remarkable decrease in the Eg, it is expected that the Mg6-P6 and Mg6-P6·T6 are sensitive to O2 molecule. Surprisingly, the Mg6-P6-O2 and specially the Mg6-P6.T6-O2 record promising values of recovery times for different attempt frequencies. Therefore, the results open a way for the development of a new and selective O2 nanosensor in the presence of CO and N2 gas molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call