Abstract
Abstract In this paper the conditions of occurrence of quasi-periodic (QP) solutions and bursting dynamics in a self-excited quasi-periodic Mathieu Oscillator are discussed. The quasi-periodic excitation consists of two periodic excitations; one with a very slow frequency and the other with a frequency resonant with the proper frequency of the oscillator. The fast dynamics are initially averaged. The complimentary quasi-static solutions of the modulation equations of amplitude and phase are determined and their stability is analyzed. Numerical simulations and power spectra are shown to complete the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.