Abstract
Light from a distant γ-ray burst backs up a key prediction of Albert Einstein's theory of relativity — that photon speed is the same regardless of energy. But it might set the stage for evolution of the theory. Observations of the distant and short γ-ray burst GRB 090510 with the Fermi Gamma-ray Space Telescope have provided an opportunity to test a central prediction of Einstein's special theory of relativity — the Lorentz invariance. This holds that all observers measure exactly the same speed of light in a vacuum, independent of photon energy. A key test of the violation of Lorentz invariance is a possible variation of photon speed with energy. Accumulated over cosmological light-travel times, even a tiny variation in photon speed should become observable — as for instance sharp features in the light curve of a γ-ray burst. No evidence for the violation of Lorentz invariance was found in the GRB 090510 spectrum, at least down to a limit of the Planck length divided by 1.2. This argues against quantum-gravity theories where the quantum nature of space–time linearly alters the speed of light with photon energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.