Abstract
The spinal CPG of the lamprey is modeled using a chain of nonlinear oscillators. Each oscillator represents a small neuron population capable of bursting under mixed NMDA and AMPA drive. Parameters of the oscillator are derived from detailed conductance-based neuron models. Analysis and simulations of dynamics of a single oscillator, a chain of locally coupled excitatory oscillators and a chain of two pairs of excitatory and inhibitory oscillators in each segment are done. The roles of asymmetric couplings and additional rostral drive for generation of a traveling wave with one cycle per chain length in a realistic frequency range are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.