Abstract
Burrs, being one of the most undesired obstructions generated during machining, affects work piece quality negatively in many aspects. Although deburring removes burrs, this extra process is time consuming, costly and might affect dimensional accuracy. This study investigates mechanisms, effects and variations on burr formation in most common machining processes such as drilling, milling, turning and grinding based on the information available in literature. The problems related to burrs as well as ways and methods to remove burr and control or minimize burr formation has critically discussed. Burrs can be minimised by selecting proper tool geometry, tool materials, coolant, machining parameters, work piece material, process planning and tool path design. As there is no method that can eliminate burr formation, thus deburring is essential to eliminate burrs after machining. Manual tools, abrasive blasting, abrasive flow, magnetic abrasive finishing, centrifugal barrel finishing, thermal melting and electrochemical effect are most commonly used for deburring depending on material, size and precision of parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.