Abstract

A new integral method is devised to predict the hydrothermal behavior of buoyant jets discharged to infinite, flowing, stratified ambients through single submerged diffusers. The method, based on an integration of the basic partial differential equations written in a natural coordinate system, is more general than previous methods. In addition, a new generalized entrainment function is defined which includes the effects of internal turbulence, buoyancy, jet orientation, and cross flow. Only one of the four entrainment coefficients is obtained by fitting predictions to data. Theoretical predictions are compared with 29 different flows. Agreement between theory and data is good; this is particularly significant as the range in experimental flow variables is considerable and the four entrainment coefficients are maintained constant for all predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.