Abstract
We study the growth of two- and three-body correlations in an ultracold Bose gas quenched to unitarity. This is encoded in the dynamics of the two- and three-body contacts analyzed in this work. Via a set of relations connecting many-body correlations dynamics with few-body models, signatures of the Efimov effect are mapped out as a function of evolution time at unitarity over a range of atomic densities $n$. For the thermal resonantly interacting Bose gas, we find that atom-bunching leads to an enhanced growth of few-body correlations. These atom-bunching effects also highlight the interplay between few-body correlations that occurs before genuine many-body effects enter on Fermi timescales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.