Abstract
The Future Circular e+ e- Collider (FCC-ee) requires two 180-degree turnaround loops to transport the positron beam from the damping ring to the lower energy section of the linac. In addition bunch compression is required to reduce the RMS bunch length from 5 mm to 0.5 mm, prior to injection into the linac. A dogleg bunch compressor comprised of two triple bend achromat (TBAs) can achieve this compression. Sextupole magnets are incorporated into the bunch compressor design for chromaticity correction as well as optimisation of the second-order longitudinal dispersion, T566, and to linearize the longitudinal phase space distribution. In this paper we present the design of the transport line and the bunch compressor. Measures to limit emittance growth due to coherent synchrotron radiation (CSR) are also discussed, because despite the relatively long bunch length, the large degree of bending required introduces cause for consideration of CSR.
Highlights
R56 value, a dogleg compressor comprised of two Triple Bend Achromat (TBA) was chosen
After the inclusion of the additional quadrupole, and the phase advance and Twiss parameters of the second TBA manipulated, the emittance growth was reduced to 6.8 %
A turnaround loop and bunch compressor were presented for the Future Circular e+e- Collider (FCC-ee) injector complex
Summary
The Future Circular e+e- Collider (FCC-ee) requires two 180-degree turnaround loops to transport the positron beam from the damping ring to the lower energy section of the linac. A dogleg bunch compressor comprised of two triple bend achromat (TBAs) can achieve this compression. Sextupole magnets are incorporated into the bunch compressor design for chromaticity correction as well as optimisation of the second-order longitudinal dispersion, T566, and to linearize the longitudinal phase space distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.