Abstract

Benzodiazepine receptor agonists are widely prescribed therapeutic agents that alter gamma-aminobutyric acid (GABA)A receptor activity and have anxiolytic effects. Post-operative use of benzodiazepines is a risk factor of delirium. Inflammatory conditions alter the anxiolytic effects of benzodiazepine. We investigated the effect of diazepam, a typical benzodiazepine anxiolytic, on changes in the emotional behavior of mice in a hole-board test after lipopolysaccharide (LPS) treatment. Diazepam dose-dependently increased the number of head-dips at doses that did not alter locomotor activity; however, diazepam dose-dependently significantly decreased the number of head-dips at doses that did not alter locomotor activity in LPS-treated mice. Flumazenil, a benzodiazepine receptor antagonist, normalized the decrease in head-dipping behavior caused by diazepam treatment in normal and LPS-treated mice. The decrease of the head-dipping effect caused by diazepam was attenuated by minocycline in LPS-treated mice. We further found that the decrease in head-dipping behavior caused by diazepam was blocked by bumetanide, a Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) antagonist, in LPS-treated mice. These findings suggest that diazepam induces the anxiety-like behavior under inflammation conditions, and may cause the GABAA receptor dysfunction associated with the chloride plasticity mediated by NKCC1, which contributes to benzodiazepine-induced delirium after surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.