Abstract

BackgroundRecurrent pregnancy loss (RPL) is associated with variable causes. Its etiology remains unexplained in about half of the cases, with no effective treatment available. Individuals with RPL have an irregular iron metabolism. In the present study, we identified key genes impacting iron metabolism that could be used for diagnosing and treating RPL. MethodsWe obtained gene expression profiles from the Gene Expression Omnibus (GEO) database. The Molecular Signatures Database was used to identify 14 gene sets related to iron metabolism, comprising 520 iron metabolism genes. Differential analysis and a weighted gene co-expression network analysis (WGCNA) of gene expression revealed two iron metabolism-related hub genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used on clinical samples to confirm our results. The receiver operating characteristic (ROC) analysis and immune infiltration analysis were conducted. In addition, we analyzed the distribution of genes and performed CellChat analysis by single-cell RNA sequencing. ResultsThe expression of two hub genes, namely, CDGSH iron sulfur domain 2 (CISD2)and Cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were reduced in RPL, as verified by both qPCR and immunohistochemistry. The Gene Ontology (GO) analysis revealed the genes predominantly engaged in autophagy and iron metabolism. The area under the curve (AUC) demonstrated better diagnostic performance for RPL using CISD2 and CYP17A1. The single-cell transcriptomic analysis of RPL demonstrated that CISD2 is expressed in the majority of cell subpopulations, whereas CYP17A1 is not. The cell cycle analysis revealed highly active natural killer (NK) cells that displayed the highest communications with other cells, including the strongest interaction with macrophages through the migratory inhibitory factor (MIF) pathway. ConclusionsOur study suggested that CISD2 and CYP17A1 genes are involved in abnormal iron metabolism, thereby contributing to RPL. These genes could be used as potential diagnostic and therapeutic markers for RPL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.