Abstract

The first observation of bulk phase separation in immiscible natural rubber (NR)/poly(methyl methacrylate) (PMMA) film using atomic force microscopy (AFM) is reported. Three different forms of AFM measurements: topographic, friction force imaging, and nanoindentation have been effectively used to investigate combined morphological and compositional mapping of the NR/PMMA system. The fracture temperature during sample microtoming and material physical properties could be responsible for the observed topographic contrast. The stronger contrast of friction imaging, relative to topographic imaging, is ascribed to local variations in mechanical properties of the phase-separated domains. Friction force imaging associated with nanoindentation response, performed under AFM force mode, highlights the AFM's ability for probing local friction, adhesion, and elastic properties, and for compositional mapping of heterogeneous polymer film. The resulting friction force imaging along with the response of the nanoindentation are in good agreement, indicating that PMMA exists mainly near the modified NR surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call